
Advanced GUI Design: Module 4! VSTGUI Custom Views 3!
Copyright © 2015 Will Pirkle

!
Creating VSTGUI Custom Views 3: CViewContainer Custom Views & Caching !
! ! ! ! ! Custom View Pointers!
Will Pirkle!!
In the last module, you learned how to create Custom View objects, either ordinary VSTGUI objects, or
your own subclassed versions. In this module, we will continue with two more details: making CViewCon-
tainer Custom Views and caching view pointers.!!
In the last module’s project CustomViews, we created the objects and then returned the pointers. In this
module, we will learn how to cache (store) the pointers to use later. With the object pointers, we can con-
trol many aspects of the GUI objects from within our code. !

!
Example 1: Making a CViewContainer Custom View and caching the pointer!
Open the CustomViewsTwo project that accompanies this module, compile the plugin and load it. The
GUI for this project contains two volume control knob templates, one text label, and four on-off switches. !
! !

We will use the switches to demonstrate how to
control the various GUI elements from within
the plugin. !!
Hide/Show: this will hide or show the Volume
Right knob template (both the text label and
knob at the same time)!!
Alter Text: this will change the “Text Info” label
in the center of the GUI!!
Alter Bitmap: this will change the knob bitmap
for the left volume control!!
Move Stuff: this will move the Right Knob Tem-
plate (both the text label and knob at the same
time)!!!!!!!!!!!

! !

I am demonstrating this technique due to several requests from RackAFX users for this kind of
GUI customization. However, there are many people who will frown upon this kind of use of the
GUI object pointers since one of the goals of object oriented design is to keep objects and their
implementation details as separate as possible.

Advanced GUI Design: Module 4! VSTGUI Custom Views 3!
Copyright © 2015 Will Pirkle

!
In the GUI Designer, right-click on the right volume knob’s template container. At the bottom of the dialog,
you can see where to enter a custom view name for the whole view container:! !!

Here, I have named the
knob template (i.e. it’s
CViewContainer) custom
view as “VolRightView-
Container” at the bottom
of the dialog. !!!!!!!!!!!!!!!!!!!!!!!!!!!

You can also set custom view names for any CViewContainer objects that you add to the GUI Designer,
either as part of RackAFX or User Templates, or with the Group Frame drag and drop method.!!
In the CustomViewTwo project, open the project’s .h file and you can see several necessary items:!!
At the top is the #include statement for the vstgui4 library:!!
// --- the entire library is contained in this #include statement
#include "../vstgui4/vstgui/vstgui.h" !
In the user variable section, we have our GUI helper and also a CViewContainer* named m_pVolRightVC.!!
! // --- our helper
 CVSTGUIHelper m_GUIHelper; !
 // --- cached pointers to custom view objects
 CViewContainer* m_pVolRightVC;

! !

Advanced GUI Design: Module 4! VSTGUI Custom Views 3!
Copyright © 2015 Will Pirkle

When caching pointers is is critical that you follow some rules to make sure you never accidentally try to
use a pointer whose object has been deleted by the VTSGUI framework (remember, reference counting
allows the framework to delete controls that are not used any more). !!
Caching Pointer Rules!!
1. declare your pointer in the .h file of the project!
2. set the pointer to NULL in the Constructor!
3. add code for the GUI_WILL_CLOSE message in showGUI() to NULL out the pointer!
4. always check the validity of the pointer before using it!!
Step through the project’s .cpp file to see these rules in action, as well as the instantiation of the view con-
tainer object:!!
Constructor:!
CCustomViewsTwo::CCustomViewsTwo()
{
 // Added by RackAFX - DO NOT REMOVE
 //
 // initUI() for GUI controls: this must be called before initializing/
 // using any GUI variables
 initUI();
 // END initUI() !
 <SNIP SNIP SNIP> !
 // Finish initializations here !
 // --- cached pointers
 m_pVolRightVC = NULL;
} !
showGUI()!!
First, the GUI_WILL_CLOSE message:!!
case GUI_WILL_CLOSE:
{
 // --- NULL out pointers - do NOT delete underlying objects
 if(m_pVolRightVC)
 m_pVolRightVC = NULL; !
 return NULL;
} !
We create the object in the GUI_CUSTOM_VIEW message. The pointer is cached after creation in the
m_pVolRightVC variable. Notice the call to setTransparency() here - we need to do this ourselves as
transparency is OFF by default. You can do other view customization here as well.!!
case GUI_CUSTOMVIEW:
{
 // --- decode the customViewName variable
 if(info->customViewName.compare("VolRightViewContainer") == 0)
 {
 // --- get the needed attributes with the helper
 const CRect rect = m_GUIHelper.getRectWithVSTGUIRECT(

! !

Advanced GUI Design: Module 4! VSTGUI Custom Views 3!
Copyright © 2015 Will Pirkle

 info->customViewRect); !
 // --- create the VC
 m_pVolRightVC = new CViewContainer(rect); !
 // --- make transparent (could also set background color/bitmap!)
 m_pVolRightVC->setTransparency(true); !
 // --- return control cloaked as a void*
 return (void*)m_pVolRightVC;
 } !
 etc… !
Using the cached pointer: hiding and showing GUI elements with setVisible()!
The switch on the GUI that will show and hide this view container is a RackAFX 2-state switch, which we
can map as a COnOffButton in VSTGUI. To use the pointer, we need to trap the message in userInter-
faceChange() for this control. The RackAFX Control ID is 45 so we use the case statement for that and
simply call the setVisible() method on the view container to show and hide it, and all its contents, at once.!!!
bool __stdcall CCustomViewsTwo::userInterfaceChange(int nControlIndex)
{
 // decode the control index
 switch(nControlIndex)
 {
 case 45: // hide/show button
 {
 // --- always test the pointer first!
 if(m_pVolRightVC)
 {
 if(m_uHideShow == SWITCH_ON)
 m_pVolRightVC->setVisible(false);
 else
 m_pVolRightVC->setVisible(true);
 }
 break;
 }
 etc… !!
Using the cached pointer: moving/resizing GUI elements with setSize()!
The switch on the GUI that will move this view container is another RackAFX 2-state switch with Control
ID 46. In order to move the view container around, you alter the View’s size member variable. The upper
left of this rectangle sets the origin for the control. The width and height set those parameters. In this ex-
ample, we will move the control down and back up again by 126 pixels. Notice how we hide the control
first, then move it, then show it again. Remove the hiding/showing code to see why that needs to be
done.!!
 case 46: // the Move button
 {
 // --- always test the pointer first!
 if(m_pVolRightVC)
 {
 // --- get the size variable from the control
 CRect rect;

! !

Advanced GUI Design: Module 4! VSTGUI Custom Views 3!
Copyright © 2015 Will Pirkle

 m_pVolRightVC->getViewSize(rect); !
 if(m_uMove == SWITCH_ON)
 {
 // --- move the VC down 126 pixels
 rect.top += 126; !
 // --- adjust the bottom to accommodate
 rect.bottom += 126;
 }
 else
 {
 // --- move the VC up 126 pixels
 rect.top -= 126; !
 // --- adjust the bottom to accommodate
 rect.bottom -= 126;
 } !
 // --- hide the control
 m_pVolRightVC->setVisible(false); !
 // --- set it
 m_pVolRightVC->setViewSize(rect); !
 // --- show the control in the new location
 m_pVolRightVC->setVisible(true); !
 }
 break;
 } !
Test the plugin and you can see how these switches work to alter the GUI programmatically. Note that this
could also be done from other locations in code, but it is a BAD IDEA to place this code in your proces-
sAudio() methods. The audio thread is high priority and will be called many times. !!!!

! !

Advanced GUI Design: Module 4! VSTGUI Custom Views 3!
Copyright © 2015 Will Pirkle

Example 2: Making a CTextLabel Custom View and caching the pointer!
Let’s continue with a CTextLabel example to make a control that whose text can be changed dynamically.
This VSTGUI object is actually more complicated that some others because you need to deal with fonts.
In addition, we will need to add a call to a cleanup function during the GUI_WILL_CLOSE message. The
Custom View name for the text label is TextInfoLabel. ! !!!!!!!!!!!!!!!!!!!!!!!!!
We will need to obey the same rules as usual. !!
The cached pointer declaration:!!
CTextLabel* m_pTextLabel; !
The constructor NULLs it out:!!
m_pTextLabel = NULL; !
We also NULL the pointer in the GUI_WILL_CLOSE message, but we need to call the cleanup() method
on the internal Font object first:!!
if(m_pTextLabel)
{
 // --- need to take care of the cleanup detail first
 m_pTextLabel->getFont()->cleanup();
 m_pTextLabel = NULL;
} !
Creation of the object requires setting a Font and Font Color. In both cases you can either user a built-in
color or built-in Font, or make your own. Both versions are shown in code. If you are making a font from
scratch, you have some control over the style variables. Notice how wire-or-ing is used to set the style.!!
! !

Advanced GUI Design: Module 4! VSTGUI Custom Views 3!
Copyright © 2015 Will Pirkle

if(info->customViewName.compare("TextInfoLabel") == 0)
{
 // --- get the needed attributes with the helper
 const CRect rect = m_GUIHelper.getRectWithVSTGUIRECT(
 info->customViewRect); !
 // --- create the label - I am not setting an initial text string
 m_pTextLabel = new CTextLabel(rect); !
 // --- make background transparent
 m_pTextLabel->setTransparency(true); !
 // --- default colors are defined in ..\vstgui4\vstgui\lib\ccolor.h
 m_pTextLabel->setFontColor(kBlackCColor); !
 // --- can also use CColor's static function
 // (0, 0, 0, 255) is r,g,b,a for BLACK
 // m_pTextLabel->setFontColor(CColor(0, 0, 0, 255)); !
 // --- FONTS: can use default fonts, or create your own
 //
 // --- Default Font:
 // default fonts defined in ..\vstgui4\vstgui\lib\cfont.h
 m_pTextLabel->setFont(kNormalFontSmaller); !!
 // --- return control cloaked as a void*
 return (void*)m_pTextLabel;
} !
To make a Font “from scratch” you need to do a bit more work:!!
 // --- custom Font:
 //
 // --- construct with Font name (must be installed on system!
 CFontDesc* fontDesc = new CFontDesc("Times New Roman");
 if(fontDesc)
 {
 fontDesc->setSize(10); // points !
 // --- set italic: note wire-or-int
 fontDesc->setStyle(fontDesc->getStyle() | kItalicFace); !
 // --- set bold: note wire-or-int
 fontDesc->setStyle(fontDesc->getStyle() | kBoldFace); !
 // --- can also add underline or strike-through style
 //fontDesc->setStyle(fontDesc->getStyle() | kUnderlineFace);
 //fontDesc->setStyle(fontDesc->getStyle() | kStrikethroughFace); !
 m_pTextLabel->setFont(fontDesc);
 } !!
Altering the text!
The switch for altering the text has the Control ID of 47. We use the code here to alter the text label:!!
! !

Advanced GUI Design: Module 4! VSTGUI Custom Views 3!
Copyright © 2015 Will Pirkle

! case 47: // alter text
 {
 // --- always test the pointer first!
 if(m_pTextLabel)
 {
 if(m_uAlterText == SWITCH_ON)
 m_pTextLabel->setText("Alter Text ON");
 else
 m_pTextLabel->setText("Alter Text OFF");
 }
 break;
 } !!
Initializing the text!
Ordinarily, you would initialize the text label’s string in the constructor. I decided to leave the string blank
and initialize it in the GUI_DID_OPEN message handler to show an example of using this message. This
also shows the flow of operation - GUI_DID_OPEN is called after the Custom View objects have been
created! !!!
! case GUI_DID_OPEN:
 {
 if(m_pTextLabel)
 m_pTextLabel->setText("GUI DID OPEN!"); !
 return NULL;
 } !!
Example 3: Making a CAnimKnob Custom View and caching the pointer!
Let’s finish with a CAnimKnob example to show how to change a control’s bitmap (graphic) dynamically
from within your plugin. Here we will change the graphic for the left volume knob. This is probably a silly
example - I am guessing that you might only really want to change graphics for things like view container
backgrounds or possibly the meter objects. The Custom View name for the left volume knob is VolLeft-
Knob.! !!!!!!!!!!!!!!!!!!!
! !

Advanced GUI Design: Module 4! VSTGUI Custom Views 3!
Copyright © 2015 Will Pirkle

!
We will need to obey the same rules as usual. !!
The cached pointer declaration:!!
CAnimKnob* m_pLeftVolKnob; !
The constructor NULLs it out:!!
m_pLeftVolKnob = NULL; !
We also NULL the pointer in the GUI_WILL_CLOSE message:!!
if(m_pLeftVolKnob)
 m_pLeftVolKnob = NULL; !!
We went over the creation of the CAnimKnob object in module 3 so there is no reason to repeat that theo-
ry. Here is the code:!!
if(info->customViewName.compare("VolLeftKnob") == 0)
{
 // --- get the needed attributes with the helper
 const CRect rect = m_GUIHelper.getRectWithVSTGUIRECT(
 info->customViewRect);
 const CPoint offsetPt = m_GUIHelper.getPointWithVSTGUIPOINT(
 info->customViewOffset);
 CBitmap* pBitmap = m_GUIHelper.loadBitmap(info); !
 // --- normal CAnimKnob
 m_pLeftVolKnob = new CAnimKnob(rect,
 (CControlListener*)info->listener,
 info->customViewTag,
 info->customViewSubPixmaps,
 info->customViewHtOneImage,
 pBitmap,
 offsetPt);

 !
 // --- decrement ref count
 if(pBitmap)
 pBitmap->forget(); !
 // --- return control cloaked as a void*
 return (void*)m_pLeftVolKnob;
} !!
Altering the bitmap!
The switch for altering the text has the Control ID of 48. We use the code here to alter the knob’s bitmap.
Notice that we still need to call forget() on the new bitmaps, but we do NOT need to do this for the old
bitmap - its reference count is decremented when we apply the new bitmap, then it is automatically delet-
ed. Notice that the full bitmap filename is used as the argument for creating the new object. You can find
these filename values in the RackAFX.uidesc file’s <bitmap> chunk as we discovered in module 2. Notice
that we always use the m_GUIHelper object’s loadBitmap() function to create the bitmap.!

! !

Advanced GUI Design: Module 4! VSTGUI Custom Views 3!
Copyright © 2015 Will Pirkle

!
case 48: // alter bitmap
{
 // --- always test the pointer first!
 if(m_pLeftVolKnob)
 {
 if(m_uChangeBitmap == SWITCH_ON)
 {
 CBitmap* pNewBitmap =
 m_GUIHelper.loadBitmap("knob303.png");

 m_pLeftVolKnob->setBackground(pNewBitmap); !
 if(pNewBitmap)
 pNewBitmap->forget();
 }
 else
 {
 CBitmap* pNewBitmap =
 m_GUIHelper.loadBitmap("sslblue.png");

 m_pLeftVolKnob->setBackground(pNewBitmap); !
 if(pNewBitmap)
 pNewBitmap->forget();
 }
 }
 break;
} !
Test the code!
Once again, try the project out and make the bitmap change dynamically. !!!
Final thoughts!
Caching pointers gives you a cool way to change your GUI programmatically from within the plugin but
you need to be careful with this. Remember that if you are not careful, you may accidentally try to use a
pointer that has no underlying object, so always obey the cached pointer rules. Also remember that you
never need to delete VSTGUI objects since they use reference counting - in fact, the destructor is de-
clared as private to prevent you from even trying!!!!!
References:!!
VSTGUI4 Files and Documentation: http://sourceforge.net/projects/vstgui/

! !

http://sourceforge.net/projects/vstgui/

